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We first discuss nonlinear aspects of phase transition theory applied to a par- 
ticular liquid crystal phase transition. A simple derivation is given to show how 
two coupled Goldstone modes (one appearing as gauge fluctuations of the 
ordered phase) can force a phase transition, against all expectations, to take 
place discontinuously (theory of Halperin, Lubensky, and Mak--but the discon- 
tinuity may be immeasurably small. Then, we describe a new dynamical test of 
phase transition order, developed by Cladis et al., that turns out  to  be more 
sensitive than x-ray diffraction and adiabatic calorimetry. Quantitative data 
found by this new method are in excellent agreement with the measurements 
of adiabatic calorimetry and x-ray diffraction as well as expectations implicit in 
the predictions of HLM. 

KEY WORDS:  Phase transitions; front propagation; dynamical systems; 
phase transition order, critical phenomena. 

1. I N T R O D U C T I O N  

The subtitle of this talk is taken from Maurice Goldhaber's definition 
of physics: Physics is discovering new things in oM places. Chemistry is 
discovering old things in new places. ~ Perhaps (and this is my addendum 
to Goldhaber's definition), materials science is discovering new things in 
new places. I like his definition. It applies to what I am going to talk about 
this evening--A dynamical test of  phase transition order." new things in old 
places, or, perhaps more d propos after the sumptuous banquet provided by 
our hosts, Old wine in new bottles. 

This is the text of an after-banquet talk given at the CNLS Workshop on the Dynamics of 
Concentrated Systems. 

2 AT & T Bell Laboratories, Murray Hill, New Jersey 07974. 
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I will illustrate how this test may be useful, using an example drawn 
from liquid crystals. The liquid crystal state of matter is new in the old field 
of condensed matter physics. It is an example of a concentrated system that 
some have thought too complex to teach us new physics. However, after 
hearing the many interesting results found in even more complicated 
systems at this workshop, I feel like the victim of the Johnstown flood who 
died and went to heaven. For his induction into heavenly society, St. Peter 
asked him to give a talk about the most stupendous event he experienced 
on earth. After thinking a bit, he said, "I know what FIt talk about. I'll talk 
about the Johnstown flood. It was the most stupendous event I witnessed 
on earth. Tons of water came flooding over a dam killing and destroying 
everything in its path." St. Peter looked sceptical and asked him ~ you 
sure about that? .... Sure," replied the new saint, "the drama and the power 
of a great roaring tentacle of water crushing and destroying everything in 
its grasp Will knock their socks off. . . . .  Well, I don't know," said St. Peter, 
"You know, Noah's going to be there." Evidently, the difference between 
me and the Johnstown saint is that there are many Noahs in this 
audience many s u r t : i v o r s  of even greater battles against complexity to 
knock socks off. 

Tonight, I discuss phase transitions (this is an old place), illustrating 
some of its features, using a particular phase transition that occurs in liquid 
crystals, the nematic-smectic A phase transition ~2~ (this is a new thing 
to phase transitions). When this transition takes place continuously, 
without a latent heat to mark the transition temperature, it is called a 
continuous transition or, for historical reasons, a second-order transition. 
Transitions showing a latent heat at the transition temperature take place 
discontinuously and are called, again for historical reasons, first-order 
phase transitions. ~ This introduces some confusion, because the word 
"order" will be used in two contexts: to refer to the type of transition (does 
it take place continuously or discontinuously?) and to characterize what is 
different between the two states, or phases of a system (as in order versus 
disorder). 

Sometimes, the magnitude of the discontinuity, as measured by the 
latent heat, at a phase transition can be changed by varying an external 
variable such as by adding impurities into the system. The question is, does 
there exist a critical value for the external field that changes the transition 
type from discontinuous (first order) to continuous (second order)? A 
theoretical answer given by Halperin, Lubensky, and Ma (HLM) t4) about 
15 years ago was: No, if the ordered phase has broken continuous sym- 
metry characterized by a gauge, a characteristic measure of length (for the 
nematic to smectic A transition) or momentum (for superconductors): This 
may not be too intelligible now, but what should be understood is that 
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under well-specified conditions, that apply (as far as we know) to the 
nematic-smectic A transition, the answer is no: this phase transition must 
necessarily be discontinuous--but the magnitude of the discontinuity may 
be very small. 

The question is important because advances in our understanding of 
continuous transitions far outstrips our understanding of discontinuous 
ones. in fact, most of what I will talk about in the sections on phase 
transitions has to do with continuous phase transitions. 

Experimental support for the theory of HLM has been inconclusive. 
Using the usual tools of x-ray diffraction 3 and adiabatic calorimetry, (7) 
many liquid crystal materials are observed to have discontinuous 
nematic-smectic A transitions, but a few compounds have continuous ones 
within the precision of experiments. ~5 9j Adiabatic calorimetry turns out to 
be a more stringent test of discontinuous transitions than x-ray diffraction: 
transitions observed by diffraction to be continuous ~8) have small but 
measurable latent heats. (7'9! By analyzing how the latent heat approaches 
zero, some indication of the existence of the HLM coupling (4) has most 
recently been found. 19) However, there are a few compounds that both 
x-ray diffraction and adiabatic calorimetry agree has a transition that is so 
close to being continuous that neither technique can observe discon- 
tinuities. 

For the new part, I will discuss how the phase transition type--that is, 
does the phase transition take place continuously (second order) or discon- 
tinuously (first order)?- -influences the existence and propagation of inter- 
faces, rm~ We believe this is the first time interracial properties have been 
used to determine the order of a phase transition. I will be illustrating 
theoretical conclusions using the same liquid crystal example. A com- 
parison of our data with data obtained using standard tools shows our 
new dynamic tool as more sensitive for distinguishing between the two 
types of transitions, ~13~ e.g., better than ten times more sensitive than the 
finest adiabatic calorimetry measurements currently available, which in 
turn are about ten times more sensitive than the finest available x-ray 
measurements. However, I want to stress that the real power of the 
dynamical technique rests on the fact that it gives a qualitative indication 
of the order of a phase transition. Finally, our experimental results can be 
shown to be consistent with the HLM picture of this phase transition being 
weakly discontinuous. 

See ref. 5 for a review of the experimental work; for a review of the theoretical work see 
ref. 6. 

822/62/5-6-2 
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2. PHASE T R A N S I T I O N S  

The business of phase transitions belongs to the realm of statistical 
physics or statistical mechanics. To give you an idea of this field of physics, 
I want to quote the opening sentences from the book States of  Matter by 
David L. Goodstein. ~2~'4 

Ludwig Boltzmann, who spent much of  his life studying statistical 
mechanics, died in 1906, by his own hand. Paul Ehretfest, carrying on the 
work, died similarly in 1933. Now it is our turn to study statistical mechanics. 

Perhaps it will be wise to approach the subject cautiously. 
Now that you have been forewarned, let us think about phase 

transitions: the way that matter changes from one state to another. Phase 
transitions may be grouped into two classes: those that involve a latent 
heat and those that do not. The first kind, those that involve a latent heat, 
are called discontinuous or first-order phase transitions and those that do 
not, continuous or second-order phase transitions. 

3. EHRENFEST'S F O R M U L A T I O N  OF PHASE TRANSIT IONS 

Ehrenfest's formulation ~31 of phase transitions in terms of thermo- 
dynamic variables uses a free energy G(P, T). in terms of G, at afirst-order 
phase transition between phases 1 and 2, as a function of temperature, say, 
at the transition temperature T,., G t = G 2, but there is a discontinuity in 
the first derivative: OGj/AT-OG2/OT,,~ L, where L is the latent heat. At a 
second-order phase transition, again, G~ = G2, and dGI/~AT= OG2/OT, but 
there is a discontinuity in the second derivative O2Gz/dT2-&2G2/AT2~ 
lICe~T, the specific heat jump at the transition. 

Soon after Ehrenfest published these ideas, it was noticed (Fig. 1) that 
if G~ < G2 for T >  T,, then for a second-order phase transition it would still 
be less for T <  Tc. That is, phase 2 would never appear, because it always 
has a larger free energy. From the many suggestions ~3) made to preserve 
the Ehrenfest formalism and still obtain a phase transition, Gorter's idea 
has proven to be seminal and was eventually formalized by Landau. 
Gorter's suggestion was that the transformation takes place because 
above T,., the phase GI simply no longer exists: "something" has gone to 
zero at T c. As we will see, that "something" is called the order parameter. 

Another difficulty with Ehrenfest's formulation of second-order phase 
transitions was that many transitions that did not exhibit a latent heat 
(notably, phase transitions in liquid systems) did not show discontinuities 

4 This book has many interesting stories, but is probably too early to offer a simple overview 
of critical phenomena as in ref. 14. 
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Fig. I. If two functions of temperature, Gt and G2, and their first derivatives with respect to 
temperature match at T,, then, if Gj < G2 for T> T,, Gt will still be less than G, for T< T,. 

in the specific heat at T,. either. This last point has been cleared up with 
the modern  theory of critical phenomena ,  a generalized theory of phase 
transitions. 

4. L A N D A U  O R D E R  P A R A M E T E R S  

Landau  first introduced the concept  of an order  parameter ,  which I 
will designate generically as ~,, to characterize what  changes at a phase 
transition. TM In the following, order  will be used in a different sense than 
" type"  of  phase transition. An order  pa ramete r  is a quant i ty  that  charac-  
terizes the symmet ry  and dimensional i ty n of the ordered,  usually lower- 
t empera ture  phase. ~ is a new the rmodynamic  variable and it is not always 
easy to define. In part icular,  its dimension n is a subtle quanti ty.  Very 
often, discovering the appropr ia te  value for n is an impor tan t  step in 
unders tanding the whole problem. A working definit ion of n is the number  
of variables that  has to be defined to characterize a "ground  state," i.e., the 
lowest energy configurat ion of the ordered state. ~14)'5 

In my opinion, ref. 14 is the best distillation of the essence of critical phenomena. I have used 
it extensively in this presentation. 
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Fig. 2. Director configuration for the isotropic, nematic, and smectic A phases. 

The power of the order parameter concept rests on a deep truth: sym- 
metry cannot change continuously even if the magnitude of the order 
parameter doesJ '3 is) Second-order transitions are often called symmetry 
breaking because the disordered phase has more symmetry than the 
ordered phase. For example, the isotropic liquid state has continuous rota- 
tional symmetry in three dimensions (Fig. 2), whereas in the nematic phase 
the system selects one direction out of the infinitely many options available, 
thereby reducing its degree of rotational symmetry. The continuous sym- 
metry of the isotropic phase has been broken. Because there is no reason 
for one direction to be "better" than any other, the total energy of the new 
phase is invariant under a continuous rotation of the selected direction. 
Another way of saying this is that an infinite number of ground states is 
available to the system. With so many ground states, low-energy excited 
states with energy ~ 0  with inverse wavelength can easily form. (16) This 
turns out to be an important concept. Such low-energy excited states are 
called Goldstone modes and are a property of systems that have broken 
continuous symmetry. They are particularly easy to excite in systems that 
are weakly interacting, such as liquid systems. At a phase transition, the 
existence of these low-energy excited states may even prevent the formation 
of the ordered state. 

The smectic A phase is a layered structure (Fig. 2) with the director, 
the direction of orientationai order, parallel to the layer normal. The 
smectic A phase breaks the continuous translational order of the nematic 
phase. The smectic A order parameter  is a periodic density wave in one 
dimension, An amplitude r specifies how well the layers are defined and a 
phase 6 ~b gives the positions of the layers in space. The broken symmetry 

6 This quantity is commonly called the phase of the order parameter. This terminology is not 
to be confused with phase as in phase transition. Using the same word to refer to two 
different ideas is a difficulty to be aware of when discovering new things in old places. It is 
particularly a problem for those discovering new things in new places. 
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in the smectic A phase is the continuous translation symmetry of the 
nematic phase along the direction of orientational order, written as n and 
not to be confused with the order parameter dimension n. The Goldstone 
mode for this broken symmetry is related to where layers begin. Translating 
all the layers an infinitesimal amount in the z direction (replacing ~b by 
~b + 6, where 6 can be infinitesimally small) does not change the energy. It 
is important to realize that the direction of orientational order is a macro- 
scopic quantity that is not easily defined on the scale of the smectic layers 

30 ~. Thus, when layers start to form near the transition to the smectic 
A phase, the order parameter has to contend with Goldstone modes from 
two broken symmetries. 

In 1970, MacMillan was the first to suggest where to look for a 
second-order nematic-smectic A transitionJ jT~ He proposed investigating 
systems where the smectic A phase formed at a much lower temperature 
than the nematic phase. He reasoned that the deeper one was in the 
nematic phase, that is, far from the isotropic phase where orientational 
fluctuations are largest, the calmer the sea of low-energy excited states, 
allowing a second-order nematic-smectic A transition to take place. It was 
well known from magnetism (Rodbell-Bean coupling) that a coupling 
between fluctuations of a broken symmetry and another order parameter, 
like the smectic A order parameter, could drive a second-order transition 
first order. Perhaps if these fluctuations were small, the "true" second-order 
character of the transition would emerge. ~2~ 

In 1973, Halperin, Lubensky, and Ma were at an Aspen summer 
workshop together, and they concluded that the coupling between the 
low-lying energy states of the broken translation order of the smectic A 
phase and local fluctuations in the direction of the orientational order 
guaranteed that this transition was fundamentally first order. 14) Their idea 
also applies to the normal metal superconducting transition that is 
formally similar to the nematic-smectic A transition. 1~81 But, in fact, the 
coupling they were ~hinking about is most devastating when interactions 
are weak, as they are typically in phase transitions in liquid systems, ~61 
such as the N A transition, where director fluctuations are much larger 
than fluctuations in layering. 

5. LANDAU FORMULATION OF PHASE TRANSITIONS 
(MEAN FIELD) 

Landau said that near a phase transition, the free energy of the system 
could be written as a polynomial f of a scalar function of the order 
parameter, ~k, say. cE~ If ~b is a complex number, this could be its 
magnitude. His strategy was to replace the sum of all possible states of the 
order parameter by the one that minimized a free energy, a "mean field." 
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The Landau description of phase transitions is known as the mean field 
limit. It is not clear why it works. The surprising fact is that it is exact for 
d, the dimension of space, greater than or equal to a critical dimension, 
d,. = 4. (14) 

In terms of ~, then, 

F= f dV(a~2+b'~3+b~t4+ ..-). (1 )  
v 

V is the volume of the space being considered. If the coefficient of the cubic 
term is not zero, the transition is first order. If the coefficient of the quartic 
term is negative, the transition is still first order even without a cubic term. 

FIRST ORDER 
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Fig. 3. Graphs  of the free energy as a function of the order parameter tp for a first- and 
second-order phase transition. To understand how an interface propagates, we think of it as 
a particle in a potential described by the free energy. At a first-order phase transition, the 
interface moves from the stable into the metastable state. Which state is metastable and which 
stable depends only on temperature, so the interface can propagate when the temperature 
is jumped above as well as below T,.. The potential is not similar for a second-order phase 
transition. Although difficult to realize experimentally, interfaces may propagate for a 
temperature quench. For a temperature jump above T~, a single time constant can be defined 
allowing the ordered state to exponentially relax to the disordered one everywhere. 
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When b' = 0 and b > 0, the transition is second order. The point on a phase 
diagram where b = 0  is a special one called a Landau tricritical point 
(LTP), where the order of a transition crosses over from being first order 
to second order (and vice versa) where there is no cubic term in Eq. (1). 
It corresponds to the case where the three minima of a first-order phase 
transition coalesceto a single minimum at ~, = 0. Tricritical points are not 
understood on as deep a level as second-order transitions. Another field 
variable is usually invoked to s tudytheir  stability, so that a tricritical point 
is the meeting point of three phase transition lines. 

In the higher temperature phase, the so-called disordered state, the 
magnitude of the order parameter is zero. It is nonzero only in the ordered 
state. At a second-order phase transition, the order parameter grows 
continuously from zero at the transition temperature while at a first-order 
transition, it jumps discontinuously from zero to a finite value just below 
the transition temperature. 

To show these results requires a little algebra fl3) and just to fix ideas, 
let us look at a second-order phase transition where b ' = 0  and h > 0 .  
Minimizing the free energy with respect to the order parameter, the 
solutions are 

0 2 = - ~ ,  0 (2 )  

We want ~O to have a real, nonzero solution below T,. but not above T,. 
The condition that -a /b  be positive below the transition temperature T,., 
zero at T~, and negative above 7",. gives, to lowest order, a = a0c, where 
~:=(T-L)/T, and b is independent of temperature. Below T,., [~f2= 
-(ao/b)~:4:0 and above T,., ~ = 0 .  

With just the information in Eq. (1), the temperature dependence of all 
the thermodynamic parameters characterizing the transition can be found. 
For example, the specific heat C o = - T ( ? 2 F / ( ? T 2 = C o + a ~ / b  has a finite 
discontinuity at T,.. In practice, fluid systems do not show a jump in heat 
capacities at 7',.; consequently, this result is considered a failure of classical 
theory to explain second-order phase transitions that was removed by 
incorporating fluctuations into the problem. What are fluctuations? 

6. FLUCTUATIONS 

The existence of a latent heat means that a fixed amount of energy is 
associated with the transformation from one state to another. At a 
first-order transition, a ff r  fluctuation into the disordered state costs 
a finite amount of energy determined by the latent heat and so one has a 
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nucleation problem (the two states are local minima). For a second-order 
transition, where f ( r  f ( -  r there is no latent heat, so fluctuations cost 
little energy and there is no nucleation problem. Above T,. one imagines a 
new equilibrium state where on average the magnitude of the order 
parameter is zero, but locally, the order parameter fluctuates, that is, varies 
in a random, time-dependent way, between positive and negative values 
maintaining (~O>=0 (Fig. 4). The fluctuations are not out of an equi- 
librium state; instead, the equilibrium state is an average over these fluctua- 
tions weighted by a probability distribution/~2~ 

In a fluctuation-dominated picture of the disordered state, it costs 
energy to vary the order parameter in space, so a term 

(3) 

has to be added to Eq. (1). an is the gauge of the ordered state described 
by the phase ~b of the order parameter. When the normal to the smectic 
planes is in the z direction, q5 = (2~z/D)z, where D is the layer spacing. In 
this case, the gauge represents the natural length of the ordered state, the 
distance between layers: a periodic variation of the order parameter with 
period given by this gauge does not increase the energy of the system. In 
the disordered state, orientation fluctuations of the gauge (not fluctuations 
in the magnitude of the layer spacing) must be considered, since they define 
the direction of the Goldstone modes of (i.e., couple to) the order 

cSY 
/ \  

'I">0 

<Y>= 0 

) • 

Fig. 4. Picture of a fluctuation. The fluctuations are not out of an equilibrium state; rather, 
the equilibrium state is an average over these fluctuations weighted by a probability 
distribution. 
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parameter fluctuations [i.e., where a layer starts: replacing ~b = (2n/D)z by 
q~ = (2n/D)z + 6]. HLM discovered that the coupling between gauge fluc- 
tuations and order parameter fluctuations in the disordered state forced 
transitions involving a gauge (such as the nematic-smectic A transition) to 
be necessarily discontinuous in three dimensions because it introduced a 
non-analytic cubic term into Eq. (1). 

The gradient term [Eq. (3)] constrains the spatial extent of the order 
parameter variations. The length over which order parameter fluctuations 
are correlated is called the coherence length ~. It is the mean distance the 
order parameter requires to change from a positive to a negative value 
(Fig. 4). Minimizing [Eq. (1) + Eq. (3)] leads to a differential equation that 
defines the coherence length, the length over which order parameter excur- 
sions are correlated: ~ = l/(Ma) 1/2, or ~ = ~.oe- J/2. As T ~  T~, ~ diverges to 
be infinite at the transition. 

~o is an important quantity. It gives a measure of the range of the 
interactions characteristic of the system and can be compared to the 
correlation length of fluctuations in the order parameter. ~0 is, in some 
sense, a measure of what fluctuation correlations have to beat to control 
the phase transitionJ 141 If ~o is large, the system's range of interactions is 
long.; resulting in a "stiff" order parameter, so one has to be closer to T, 
for fluctuations to be correlated on a comparable scale than for materials 
with a small r 

The mean field, or classical limit (Landau limit) refers to a range of 
temperatures not too far from the transition temperature and not too close 
so that the ~4 term approaches zero more slowly as T ~  T, than the term 
quadratic in ~,. Whether or not this is the case depends on the temperature 
dependence of b, the coefficient of the fourth-order term. When this term 
is independent of temperature, as it is in Landau's formulation, fluctuations 
do not control the transition in three dimensions. 

If b-- .0  more slowly than a as T ~  T,, then the importance of 
the fourth-order term grows and can no longer be obviously neglected. 
Fluctuations become critical, i.e., are correlated over distances comparable 
to ~0 and classical theory breaks down. 

Halperin, Lubensky, and Ma (HLM) predicted that the coupling 
between transverse fluctuations ~n of the orientational order parameter and 
fluctuations in the smectic A order parameter that I will also write for 
simplicity as ~, not 6~, resulted in a cubic term so that the transition 
is inescapably first order in d = 3 .  (4~ To see this, ~14) we first consider 
Eq. (1 )+  Eq. (3) specifically for the nematic-smectic A transition near TNA: 

fOp, f n ) = f o + ~  + ~  + ~  V -  fin + K ( V •  2 (4) 
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The Goldstone modes of the nematic phase appear as gauge fluctuations 
and K(V x 6n) 2 is the elastic energy associated with it. When fluctuations 
in the gauge field are much stronger than fluctuations in ~ [b is small in 
Eq. (4)], the spectrum of 6n can be obtained by Fourier transforming 
Eq. (4) and assuming equipartition, to obtain 

! 

( 6 n , ) 2 ~ k  z +~ b2 

Order parameter fluctuations open a gap in the spectrum of orientational 
fluctuations at small k. Fourier transforming back, one finds 

( 6 n 2 ) ~ j  I dk __l/tu 2 (5) 

Substituting Eq. (5) back into Eq. (4), then, for 2 < d < 4 ,  

a' b 
riO, n )=  .1;i + ~- 0 2 + ~ 0 4 - C ]O[ ,1 f4'; 

Although the term quadratic in ~, is enhanced by a contribution ~ +27t 
when d =  3, a negative, nonanalytic cubic term remains from the integra- 
tion. Evidently, for this effect, the dimensionality of space is important. For 
sufficiently large b, fluctuations in ~b become important and the above 
procedure becomes questionable. I~J Thus, the best way to test the HLM 
result is close to an LTP where b ~ 0 .  ~ 

The HLM coupling mechanism is the exclusion of twist and bend 
deformations in the layered smectic A phase and is formally similar to the 
Meissner effect in superconductors. Twist and bend deformations are 
incompatible with a layered structure, since they introduce dislocations in 
the layering. ~14a8) 

In more general terms, this is an example of a "Higgs mechanism." 
The transverse vectorial mode of 6n (i.e., the photon, a gauge field with 
zero mass) couples to a scalar mode, namely the phase ~b of the smectic A 
order parameter (Goldstone mode with zero mass), resulting in a com- 
posite mode of finite mass (each mode providing a mass for the other) 
because of the coupling/~4) 

The simplicity of the HLM argument makes it particularly compelling 
near an LTP where mean field behavior prevails. But, as mentioned earlier, 
when discussing the order parameter for this transition, many materials 
have been found to exhibit a second-order nematic-smectic A phase 
transition: latent heats are immeasurably small and the coherence length as 
a function of temperature marches steadily on to infinity with often strange 
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exponents, but nevertheless with no sign of deviating to a finite value at T,. 
It has been a puzzle to many. theorists and experimentalists alike for these 
past 15 years. 

7. C R I T I C A L  R E G I M E  A N D  S C A L I N G  R E L A T I O N S  ~12"~4) 

In the general case of fluctuation-dominated phase transitions, a 
correlation function F,,~l/r a-2+~ is defined. F defines the exponent 
q <1 that affects the rate fluctuation correlations decay and is assumed 
independent of the magnitude of the coupling constant, that is, the 
constant of proportionality. By introducing t/, phase transitions in d~< 2 
can be studied. The temperature dependence of ~ in the disordered state is 
defined as ~ ~ ~0e-~', where v is a critical exponent to be determined and 
defined to be positive. The temperature dependence of all physical quan- 
tities in the disordered state can be related to the exponents v and r/. 
These in turn depend only on n and d. For example, the exponent for the 
correlation length v does not depend on the magnitude of the coupling 
constant ~o. 

One assumes phenomena characterized by a particular length scale to 
be independent of dimensional parameters whose scale is very different. 
The reason critical exponents can be interpreted in powers of length is 
because scaling transformations do not uniformly dilate all lengths, but 
only that length ~ that governs the physicsJ t41 Some parameters are 
relevant and some are irrelevant for determining the stability of the state of 
the system. Scaling relations are a way to define formally the relevant 
parameters controlling the transition and to show how they are all related 
to the fundamental length ~. Because of the long-range nature of the 
correlations in fluctuations, the system is powered by collective rather than 
single-particle properties. 

8. S C A L I N G  R E L A T I O N S  F R O M  N A I V E  D I M E N S I O N A L  
ANALYSIS~IZ, I"~ 

Naive dimensional analysis can be used to deduce the temperature 
dependence of all the relevant parameters. To do this, one notes that the 
energy density f divided by a tempeature is an inverse volume, f / T ~  1/~ a. 
Then, with the definition of F 

1 
r ( ~ )  = ( ~ ( o )  0 ( ~ ) )  ~ ~,.-2 +. (6) 
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the temperature dependence of the order parameter is 

2fl = v(d  + ~l - 2). 

An interesting feature of the scaling relations is that they depend only on 
the dimension of space d and none of them depend explicitly on the dimen- 
sion of the exponents that have been observed at the nematic-smectic A 
transition. 

The scaling relations are more universal than the precise magnitudes 
of the exponents. Two lengths can be measured in the nematic phase on 
approaching the smectic A transition, ~H and ~ ,  and each diverges as 
T ~ T ,  with different exponents. Nevertheless, defining ~=(~'11~) ~/~, 
scaling relations hold ~J - i n  many cases. 

Sur face  Tension 

A striking visual feature of the gas liquid critical point is that the 
interface between the phases vanishes. This is called critical opalescence. 
The surface tension a vanishes at the critical point (T,, P,J. Since we are 
particularly interested in the dynamics of interfaces, it is instructive at this 
point to be aware that surface tension a goes to zero at a second-order 
phase transition with an exponent p.(~2j Surface tension is an energy per 
area or an energy density times a length, f x r and f scaled by temperature 
is again~ d, so 

e...e~, f ~ . . . ~  a+I .g,,,u ~t (7) 

or # = v ( d -  1). So, for d =  I, the surface tension is independent of tem- 
perature. But when fluctuations dominate in 3d,/~ = 4/3. If scaling applies 
in the classical regime, v = 1/2, /~ = 1, i.e., the surface tension goes linearly 
to zero as T ~  To. 

9. G. I. T A Y L O R  A N D  R E L E V A N T  P A R A M E T E R S  

As we have seen, dimensional analysis is a powerful technique to learn 
a great deal about a complicated phenomena. But, you need to be able to 
put your finger on the essential features of the problem. And that is where 
the talent lies: distinguishing between relevant and irrelevant dimensions. 
An amusing anecdote of the power of dimensional analysis that illustrates 
this is the story 1~2~ of how G. I. Taylor deduced the yield of the first nuclear 
explosion from a series of photographs of the expanding fireball in L(fi, 
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magazine (Fig. 5). He realized he was seeing a strong shock expanding into 
an undisturbed medium of density p. The photographs gave him the radius 
L of the fireball as a function of time t. Thus, L and t are relevant and M 
must be irrelevant. The radius, with dimensions of length, depended on E 
(ML~/t2), the initial energy released by the bomb, p (M/L3), and t. He 
wrote these three quantities in a way so that their net dimensions came out 
to a length and the irrelevant parameter, mass, canceled: 

r(t) { ML2 L3 1/5 \1/5 

A log-log plot of r vs. t (2�89 decades in r and 4 in t), measured from the 
pictures, gave a slope of 2/5 that checked the irrelevancy of M. The factor 

Fig. 5. Some of the photographs of an atomic bomb explosion used by G. 1. Taylor to check 
his deduction of the yield of the bomb from dimensional analysis. 
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E/p could be obtained from an extrapolation of r when t = 1. Since p, the 
density of undisturbed air, was known, E, the energy not radiated outside 
the ball of fire, was determined to within a factor of order 1. Actually, 
Taylor also calculated the constant of proportionality and made several 
estimates. The one he favored was E ~ 7 x  102~ 16,800 tons T N T  
(using 1 g TNT liberates 1000 calories). ~tgl 

So, as Goodstein says, ~2j "For  a person who can grasp the essential 
physics (what are relevant and what are irrelevant parameters) of a 
problem well enough to use dimensional analysis, our nation's deepest 
secret was published in Life magazine?" 

This is a good story, but exaggerated for the entertainment of students. 
The filmed sequence and photographs that G. I. Taylor measured to check 
his expression were made by several people, one a director here at 
Los Alamos, not Life magazine. I thought it best to check this story before 
telling it at Los Alamos and asked our librarians to find those pictures 
in L([i,. They hunted for a couple of days and called their sources at L(/'e, 
but found nothing. So I telephoned Goodstein, who suggested I call 
P. G. Saffman, a former student of G. I. Taylor. Saffman said that he never 
discussed the bomb with Taylor, but suggested I look at Taylor's Collected 
Works and they just happened to be on our library shelf: bingo, there it 
was? 

Taylor wrote several classified reports for the British War Office, one 
of which included his derivation of Eq, (8) in 1941 ,be fore  there even was 
a bomb, before the United States entered WW II. After the bomb had been 
tested and 2 years after the films and photographs had been declassified, he 
wrote another article estimating the yield of the bomb from the pictures 
and his theory. ~19J 

It is still a good story. 

10. NEW PLACES: D Y N A M I C S  OF FRONTS AT FIRST- A N D  
SECOND-ORDER PHASE T R A N S I T I O N S  

To understand the dynamics of interfaces, we consider it analogous 
to a particle in a potential f(O), ~1~ as shown in Fig. 3. For  a first-order 
transition, in a temperature range close enough to the transition 
temperature, f ( ~ )  has three minima. Above Tc, their stabilities are 
exchanged. Since both phases are locally stable, the energy of an interface 
between the two phases is finite and there is a nucleation barrier, resulting 
in hysteresis: the system can be undercooled or superheated. Temperature 
determines which side of the interface is stable and which side is metastable 
and the front moves from the stable into the metastable state: front 
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propagation for first-order transitions is reversible with temperature. Such 
behavior has been called an inverted bifurcation. 

A second-order transition can be neither undercooled or super- 
heated. (3'13) A sharp interface does not exist between the two phases, but 
the dynamics of an ordered state confined by a temperature step, say, may 
be studied. When the temperature step is released so that T is uniform and 
below T,., the disordered state is unstable (df/d~/I0 = 0), and the ordered 
state propagates into the unstable state. The propagation of a "confined" 
state when released from captivity has recently been observed by Fineberg 
and Steinberg (2~ near the threshold for convection. Releasing the tem- 
perature step so T is uniform and above T,., the disordered state is stable. 
A net force exists everywhere in the ordered state (df/dt~ ~ ~), proportional 
to the magnitude of ~, defining a single time constant for relaxation to the 

= 0  state. The irreversible behavior with temperature exhibited by an 
interface moving in a second-order potential has been called a .forward 
bifurcation. 

Thus, the direct observation, first of all, of an interface, and second, of 
the interface propagating in both directions is powerful evidence that the 
transition is first order or discontinuous. 

Propaga t ion  Speed 

The temperature dependence of the interface speed depends on the 
order of the phase transition. In a potential characteristic of a first-order 
transition where the two states are metastable, its speed is linear in tem- 
perature, going through zero at T,.. For a second-order transition, the 
speed varies like t:J/2 and can only be seen for T <  T,.. The time-dependent 
Ginzburg Landau equation can be used to formalize these results. 

The time-dependent Ginzburg-Landau equation is found by equating 
the Euler-Lagrange condition applied to the free energy density to the time 
derivative of the order parameter: (~~ 

d~b O 8f  Of 1 O2~k aO_b~k3, •, 8~ 
7 d--[=O-~(9~k, - 06 M O x  2 =~xx (9) 

where ~, is now a function of x and time t. Multiplying through by dqJ/dx, 
then integrating, a relation between the front speed v, the front profile 
d~k/dx, and the energy density can be obtained as 

~ ,~, dx  = -  ~, d X d x d ~  ' A - f ~  (lO) 
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First-Order Case (Well-Defined Profile). In this case, 

. L  - f , ,  = 

where L is the latent heat. Thus, from Eq. (10), the front speed is linear in 
temperature and the front propagates from the stable into the metastable 
state. To determine the front speed in terms of ~,., the magnitude of the 
coherence length at the first-order transition temperature TNA, we consider 
two points. 

In the Vicinity of a Landau Tricritical Point. In the vicinity of an 
LTP, h ~ 0 in Eq. (9) and the three minima of a first-order transition are 
close to each other. In this limit, f can be represented {2'} as 

�9 4 2 .I = - r + 

Thus, 1/r and the latent heat scales with thc coefficient of the 
fourth-order term, or L ~ s ~ l / ( < . ,  and is infinite at the LTP in the 
absence of a cubic term. Counting powers of qs, and (< on the left-hand side 
of Eq. (10) and equating them to L~: ,--~<2c, we obtain 

~ C , .  ~ 

Thus v/e~ ~<.: the closer the system is to a second-order transition, the 
steeper the dependence of speed on temperature. At the LTP, in the 
absence of a cubic term, vie is infinite. 

HLM Effect (Cubic Corrections at the L TP). When a cubic term is 
added to the free energy density, the latent heat at the LTP (or the jump 
in entropy at the LTP, AS*) is not zero, and is used to scale the data. 
Anisimov et aL found they could fit all the known calorimetry data to a 
functional form derived under these assumptions: 19'~ 

(d~_u ( Z I ~ . ) 1 / 2  - ~ "  As*~R ( x - x * ) - y  - .V* (1t) 

where y - y *  is a Landau parameter relating the distance to the LTP. 
However, two compounds could not be placed on the curve because their 
latent heat was too small to measure. 

The susceptibility can also be related to the latent heat under the same 
conditions, resulting in the following expression: {~} 

Z<- A--~<,*=\ ~---S--g) 3 + 3 \  ~/--S--~) J (12) 
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where X~ is the susceptibility on the transition line. Assuming the 
anisotropic generalization of hyperscaling holds, we can then use this 
expression to deduce v ~ ~c ~ c -  , ,m from the latent heat data. 

Second-Order  Case (No Wel l -Def ined  Profile or Conf ined 
Ordered State) .  

I. T >  To: Fronts do not propagate. This can be seen using Eq. (9), 
for in this case, 7 8~9/8t = - l a l  tp. The time dependence is therefore given by 
a simple exponential decay: ~, =~'o exp( - la l  t/7). A single time constant 
can be defined for any initial value of ~9 allowing the whole system to relax 
at the same rate to the ~, = 0 state. 

2. T <  T,: If a front, or an interface, can be confined at a second- 
order transition, it may propagate, but only one way with temperature. 
The bifurcation is forward. The temperature dependence of its speed can be 
found by scaling as f , - J ; ,  ~ 1 / ~  d and 

\ d x /  (13) 

Substituting Eqs. (13) into Eq. (10) and counting powers of ~, 

v ~  dt'..~a+.--~ \dt~] ~ .1 , +.1~,~:,.I, ,,I (14) 

The predictions of marginal stability 122~ (mean field) for fronts propagating 
from an unstable part of the potential into a stable part can be recovered 
by the mean field exponents. /1 = 0 and v = 1/2. 

12. APPLICATION TO THE 8CB A N D  9CB- IOCB MIXTURES 

To test how the speed of a front propagating at a first-order phase 
transition under isothermal conditions depends on its distance from a 
second-order phase transition, we required a system where both the latent 
heat and the coherence length had been determined. A system that met 
these requirements was the 9CB-10CB and 8CB-10CB mixtures 9CB, 
nonylcyanobiphenyl; 10CB, decylcyanobiphenyl; 8CB, octylcyanobiphenyl. 

According to the best available x-ray (8) measurements, the nematic- 
smectic A transition in 8CB is second order and the 9CB-10CB mixtures 
exhibit a tricriticai point at 9.7% by weight of 10CB in 9CB. Mixtures with 
more 10CB in 9CB appear first order, and those with less, second order. 
On the other hand, calorimetry measurements t7) for these compounds 
suggest that the 9CB-10CB system is always first order, whereas 8CB is 

822/62/5-6-3 
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second order. This then gives an idea of the relative precision with which 
the order of a transition can be made using the standard tools. Adiabatic 
calorimetry clearly measures a latent heat in several compounds that x-ray 
diffraction sees as being second order. However, even adiabatic calorimetry 
failed to see a latent heat for 8CB. 

Based on the dynamics of the fronts exhibited by these materials, our 
results are: first, they all exhibit the dynamic characteristics of a first-order 
transition, and second, the behavior of the interface speed as a function of 
T - 7 " ,  and the coherence length at the first-order transition temperature 
T,., i.e., ~(Tc)=~,., is consistent with the behavior expected on the 
first-order side of a tricritical point. The order of magnitude of the 
microscopic time that emerges from these measurements, r = 7.5 • l 0  ~ sec, 
is reasonable, tt~ 

13. D I S C U S S I O N  OF E X P E R I M E N T A L  SETUP 

The experiment was to start f rom a uniform state just above (or 
below) T,, then change the temperature at a rate of 0.01 'C/msec to T, just 
below (or above) T,, then record the front passage as it was observed 
through a microscope with a video monitor. 

Although it is, in principle, easy to check experimentally whether, in 
a given sample, front propagation is inverted, that is, propagates both on 
cooling and heating, or forward, that is, propagates only on cooling, to 
obtain quantitative data: (1)samples must be small, to allow the tem- 
perature to change fast enough to ensure that the front is propagating 
under isothermal conditions, and (2)samples must be of uniform thickness 
with the director perfectly oriented perpendicular to the field of view. We 
resolved the first by preparing small sample cells: typically 1 cm by 1.5 cm 
by 13 #m. A 2 x 2.5 • 0.7 mm 3 platinum resistance thermometer was ther- 
mally sunk to the cell just outside the field of view to monitor sample tem- 
perature during the passage of the front. We resolved the second by using 
the powerful surface treatment of Patel et al. ~23) that provides a defect-free 
alignment over the entire sample. 

The alignment process developed to align smectic materials gave 
extremely well-oriented samples. (23) The direction of n in the plane of the 
transparent substrates (both glass and sapphire substrates were used) was 
imposed by buffing the glass plates with a machine especially designed for 
this purpose. It precisely determines the orientation of a. The director was 
oriented in the plane of the glass, so that the observation direction is 
exactly perpendicular to the direction of broken translational symmetry 
characterizing this transition. Technically, this is difficult to achieve over 
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such large areas of the cell: in these cells n was uniformly oriented over the 
entire cell. They were the best oriented cells I have ever seen. We have not 
observed fronts in similar cells when making these observations parallel to 
the direction of broken symmetry. Bechhoeffer t24) has told me that in a 
temperature gradient they are able to see an interface in 8CB in this 
direction. It is very subtle and they have so far not been able to film it. 

The chemical purity of the samples was checked and found to be state 
of the ar t - -99% pure. This was necessary because, as we have seen, 
impurities are used to change the order of a transition. 

Sample cells were made by sealing together with Torr seal epoxy (a 
low-vapor epoxy designed for sealing leaks in high-vacuum systems) a pair 
of glass or sapphire plates separated by Mylar spacers to determine cell 
thickness. Both the thickness and uniformity of the cells were checked using 
a section microscope. After several cells had been made, the most uniform, 
with thicknesses ranging from 1 l to 15 #m, were selected for vacuum filling 
with the liquid crystal material. 

To control the temperature of the samples, we used a Mettler 
microscope hot-stage. The design of this oven consists of two boxes, one 
inside the other. In the inside box, there are two heating plates positioned 
above and below the sample. The temperature of the two plates is 
electronically controlled by a servo provided by a platinum resistance 
thermometer in the bottom plate. There is a 2.5-mm hole in the top and 
bottom plates that allows light to pass through the oven. The inside box 
is completely enclosed in another box with two larger holes covered by 
glass slides to let the light pass through the sample into the microscope 
optics. The temperature gradients inside the inner box were checked and 
found to be immeasurably small in the optically accessible area that is 
2.5 mm in diameter. 

The temperature set point mechanism was interfaced to an 
AT & T PC 6300 and temperature changes of 0.01 "C/msec could be made. 
Although the interior thermal mass of the oven is small, thermal relaxation 
times were on the order of 1 sec. As mentioned above, the temperature of 
the cell during the passage of the front was measured with a small platinum 
resistance thermometer thermally sunk to the sample cell. It can be read 
with a precision of 0.01 ~ 

T e m p e r a t u r e  G radients  

Suppose there is a temperature gradient across the field of view; then 
the front speed will no longer be a linear function of temperature, since it 
will accelerate or decelerate, depending upon whether it travels "down" the 
gradient or "up." Thus, whether gradients are large enough to be a 
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problem can be assessed by monitoring how uniformly a front propagates 
across the field of view by recording its trajectory on tape. This is, indeed, 
a sensitive way to measure temperature gradients. 

Another way to check the effect of temperature gradients is to rotate 
the sample 90 ~ relative to the heating plates and the field of view. If the 
front persists in traveling the same way, then temperature gradients are 
large enough to dominate these experiments. If the front now travels from 
"top" to "bottom" rather than left to right, say, then it can be concluded 
that although it is impossible to say how much of a temperature gradient 
there is, it is too small to influence the measurements. Indeed, to observe 
a front at a second-order transition in these materials, a large temperature 
gradient (about ,-, I"C/10/am) is required. We can absolutely exclude the 
existence of such a gradient in our setup. 

Monochromatic light was used from a weak sodium lamp especially 
designed for light microscope observations. This was done mainly to avoid 
heating effects from the source of illumination, in some samples, such as 
80CB, the front could be stabilized in the middle of the field of view and 
made to move slightly back and forth simply by raising or lowering the 
condensing stage of the microscope when the usual white light source was 
used. This is most probably a result of UV absorption by the glass plates, 
since there is no absorption band for CB compounds at the relevant 
wavelengths. 

The sample was viewed with a light-sensitive video camera. With the 
camera, the front could be observed on a monitor even though it was 
difficult to see by direct visual observation, given the low intensity of the 
illumination. A polarizer and analyzer were used and adjusted to just 
slightly off the extinction position. 

The time of flight of the front was recorded using a VCR interfaced to 
the camera. The VCR was also controlled by the AT & T PC 6300. Recorded 
passages of the front motion were then played back and from a measure 
of the number of frames taken to travel across a premeasured distance 
corresponding to an ~ 1-mm path of the front, a speed was determined for 
the temperature of the cell during the front motion. The time resolution 
of this measurement is 0.1 sec. These recordings also enabled us to check 
the uniformity of the front speed during its time of flight. Only those 
observations made under isothermal conditions, determined by monitoring 
the PT100 thermometers thermally sunk to the cell, were used. 

The velocity as a function of temperature was plotted for both direc- 
tions of the front propagation. It was found that the two sets of data fell 
on a straight line that was used to determine the transition temperature 
TNA for that particular sample. Once the data had been replotted as a 
function of e = ( T - T N A ) / T N A  using the computed value for TNA , the 
slope v/e was determined (Fig. 6). 
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Fig .  6. Interface speed ~; a s  a function of distance to the transition temperature ,:. The closer 
the system is to  a second-order phase transition, the steeper the slope t,/e,. 

In all our experiments, 7 we observe interfaces between the nematic and 
smectic A phases near T,. Furthermore, interfaces are found to propagate 
into the disordered state as well as into the ordered state. Qualitatively, 
therefore, the dynamic signature of the nematic to smectic A phase 
transition is consistent with first-order behavior, an inverted bifurcation. 

No systematic dependence of the front speed on its orientation relative 
to the director was detected. This means that either it is too small for our 
experiments to resolve or the transition has indeed selected a ~ that is inde- 
pendent of the director orientation n. Thus, the scale we adopt to describe 
our data is r  1/3 consistent with the "anisotropic" scaling 
arguments of the MIT group deduced by considering the available heat 
capacity, light scattering, and x-ray scattering data. ~8) 

Using the available latent heat (7) and x-ray Is) data, we verified that the 
relationship L , , ~ ,  ~ holds over the range 14%-28% 10CB in 9CB, 

7 The following is a list of the compounds we studied where fronts were observed on heating 
and cooling through the N-A transition: 8OCB and the mixture 1.5% 60CB in 80CB; the 
80CB-DB70CN mixtures 15 %, 20 %, and 32% 80CB in DB70CN; 40.8 and the mixture 
1.5% 40.8 in 80CB; 8CB: 9CB; the 9CB-10CB mixtures 4.7%, 5%, 5.8%, 8.9%, 9%, 9.7%, 
14.1%, 14.2%, 15.6%, 20.1%, 22.4%, and 28.1% 10CB in 9CB; and 10E6. 
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Fig. 7. Plot of v/~: vs. ~,., the magnitude of the coherence length at 7,. 

corresponding to a factor of three in r We therefore used it to estimate 
~c for concentrations below 14%, for which measured values of r are 
unavailable..An upper limit for the latent heat is taken to estimate ~,. for 
8CBJ 7) Figure 7 shows dr~de versus ~c so obtained. 

14. E X P E R I M E N T A L  RESULTS 

A photomicrograph of the front in 9CB is shown as an inset in Fig. 7. 
The field of view is about 1 mm x 1 mm. In the figure, each data point 
represents a different mixture corresponding to the composition range 
0-28.2% 10CB in 9CB. Using only points where the uncertainty in ~,. is 
insignificant, the straight line describing the data is dv/d~ (cm/sec)~ 
1.3x 108 (see -1) ~c (cm). The microscopic time characterizing the tran- 
sition is v ~ 7.5 x 10 -9 sec. Taking a typical diffusion constant for nematic 
and smectic A phases, D = 4 x 10 -7 cm2/sec, at similar temperatures, 125; in 
time v a molecule diffuses ~6/~,  which is adequate to relax the smectic 
order parameter. 
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We note that the magnitude of dr/dr, is of order 10 m/see in Fig. 7. 
This shows that these nematic-smectic A interfaces grow nearly as easily as 
the solid-liquid interfaces in simple atomic systems. Computer simula- 
tions t26~ on Lennard-Jones systems suggest a slope of about 80 m/see for 
argon, while experimental data t27~ for Si are consistent with a slope of the 
same order. Clearly, the weakness of the first-order transition contributes 
to the fast growth of these liquid crystal interfaces. 

Figure 8a shows the same data (9CB-10CB) as a function of y - y *  
[Eq. (11)] assuming the HLM theory and the latent heat measurements of 
Thoen et al. 171 The only adjustable parameter here is the choice for the con- 
centration corresponding to the LTP, y*. The 9CB 10CB mixtures are all 
near the LTP. The agreement seems remarkable and shows that front 
velocity measurements give qualitatively the same results as the finest 
adiabatic calorimetry measurements t71 in this limit. On the other hand, the 
8CB--10CB mixtures (Fig. 8b) strayed further from the LTP, although still 
qualitatively showing the dynamical signature of a first-order phase tran- 
sition; quantitative deviations are seen from mean field expectations as 
expected. 

15. C O N C L U S I O N S  

Measurements of front velocities are a new tool for determining the 
order of a transition. We have used it to show that even transitions that fall 
below the resolution of x-ray and adiabatic calorimetry exhibit the dynamic 
signature of a first-order transition. By scaling all data from diffraction, 
calorimetry, and dynamic measurements with their value at the Landau 
tricritical point, a universal plot can be made that is consistent with the 
existence of a small cubic term in the Landau free energy. All the data are 
in excellent, if long overdue, agreement with the appreciation of subtleties 
of phase transitions by Halperin, Lubensky, and Ma. 14t 
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